USING A RISK-BASED, SYSTEMIC APPROACH TO SAFETY ANALYSIS TO PREVENT CRASHES

NJDOT Research Showcase
October 28, 2015

Joe Fish, Cambridge Systematics

AGENDA

Overview of systemic approach to safety

Systemic Safety Project Selection Tool

Case Studies

- Utah
- Ohio/Mid-Ohio Regional Planning Commission

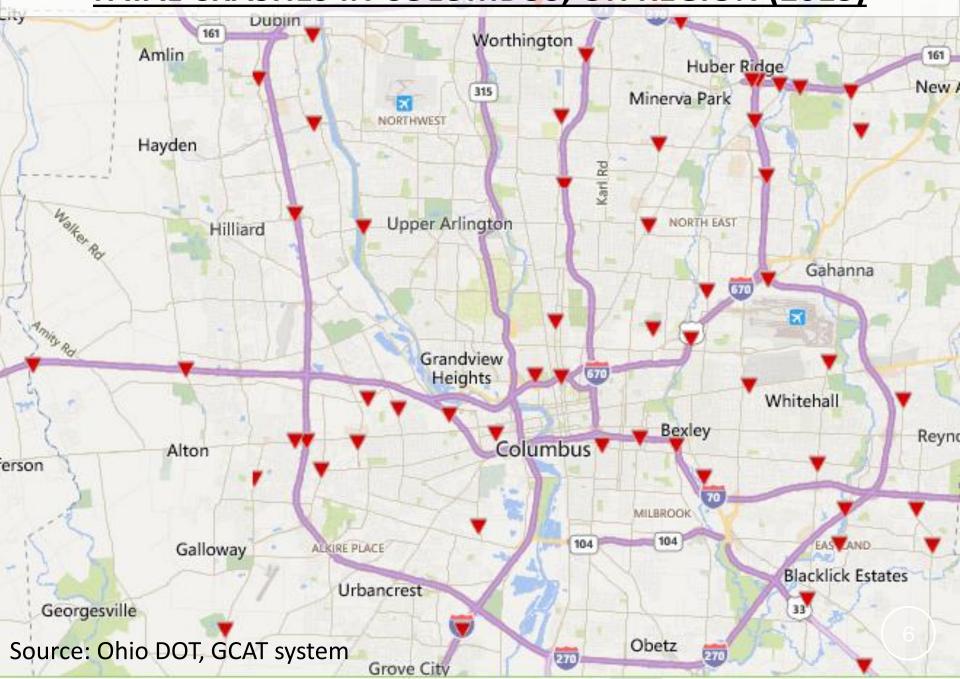
Potential Application to New Jersey

OVERVIEW OF SYSTEMIC SAFETY APPROACH

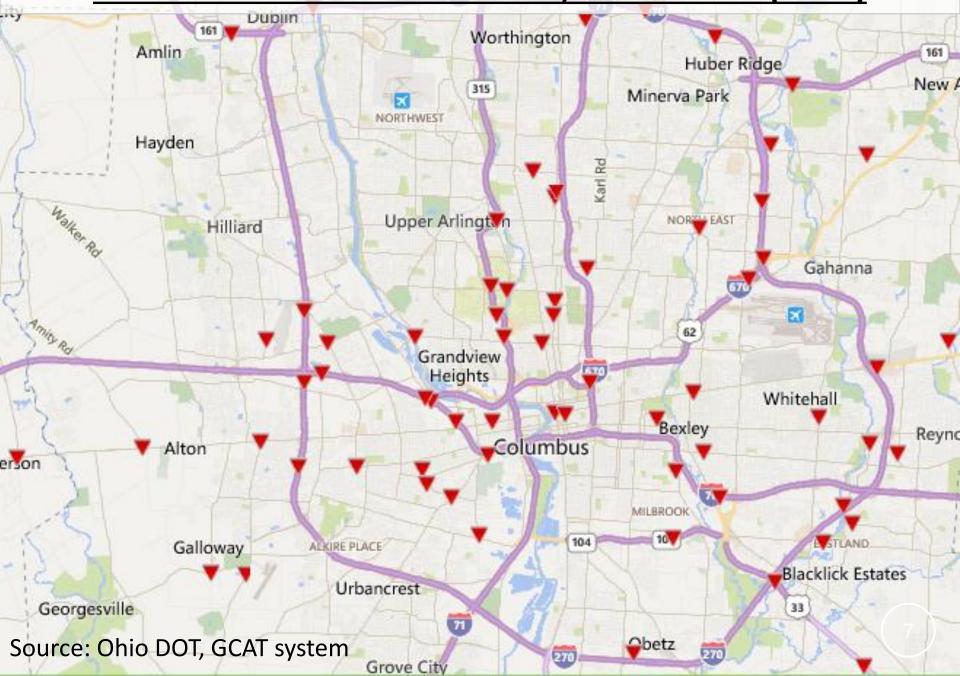
THE CHALLENGE

54% of fatal crashes are in rural areas

- **12%** in NJ
- **53% in PA**
- **53% in NY**


Rural roads spread out over wide area

Low density of crashes > seemingly random locations



FATAL CRASHES IN COLUMBUS, OH REGION (2012) Dupim Worthington Amlin 161 Huber Ridge New Minerva Park NORTHWEST Hayden Upper Arlington NORTH EAST Hilliard Gahanna Grandview 670 Heights Whitehall Bexley Reyn Columbus Alton erson MILBROOK 104 PAINE PLACE EASTLAND Galloway Blacklick Estates Urbancrest Georgesville 33 Source: Ohio DOT, GCAT system Obetz Grove City

FATAL CRASHES IN COLUMBUS, OH REGION (2013)

FATAL CRASHES IN COLUMBUS, OH REGION (2014)

CONSISTENCY OF CRASH TYPES

% of Fatal and Incapacitating Injuries by Crash Type

Year	Angle	Fixed Object	Pedestrian	Rear-End
2006	21%	23%	12%	14%
2007	19%	23%	12%	14%
2008	23%	21%	13%	10%
2009	19%	21%	11%	12%
2010	20%	22%	13%	11%

Source: Mid-Ohio Regional Planning Commission

WHAT IS A SYSTEMIC SAFETY IMPROVEMENT?

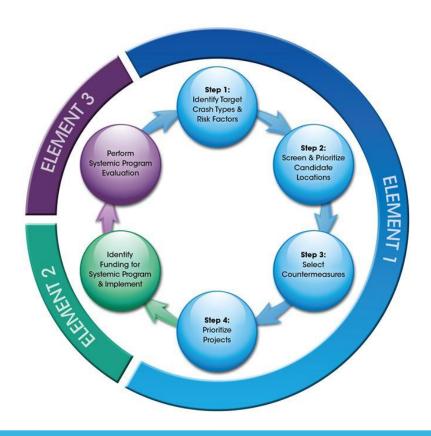
An improvement that is widely implemented based on highrisk roadway features that are correlated with particular severe crash types.

WHAT DO WE MEAN BY "RISK"?

The potential for a specific type of severe crash to occur at a specific location because of the location's characteristics or features.

>> Severe crash locations are not random <<

BENEFITS OF A SYSTEMIC APPROACH


- Increases potential to reduce severe crashes
- High benefit to cost ratio
- Proactively identify safety improvements
- Complementary to site analysis approach
- Greater understanding of severe crashes, including contributing factors and location characteristics
- Good stewardship of public roads

FHWA SYSTEMIC SAFETY PROJECT SELECTION TOOL

FHWA SYSTEMIC SAFETY PROJECT SELECTION TOOL

Source: FHWA. Systemic Safety Project Selection Tool. 2013.

SYSTEMIC SAFETY PLANNING PROCESS

Element 1

Source: FHWA. Systemic Safety Project Selection Tool. 2013.

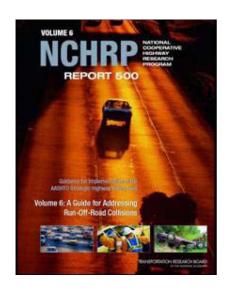
DATA NEEDS & SOURCES

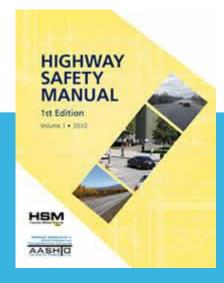
Crash data

- State or local database
- FARS

Roadway data

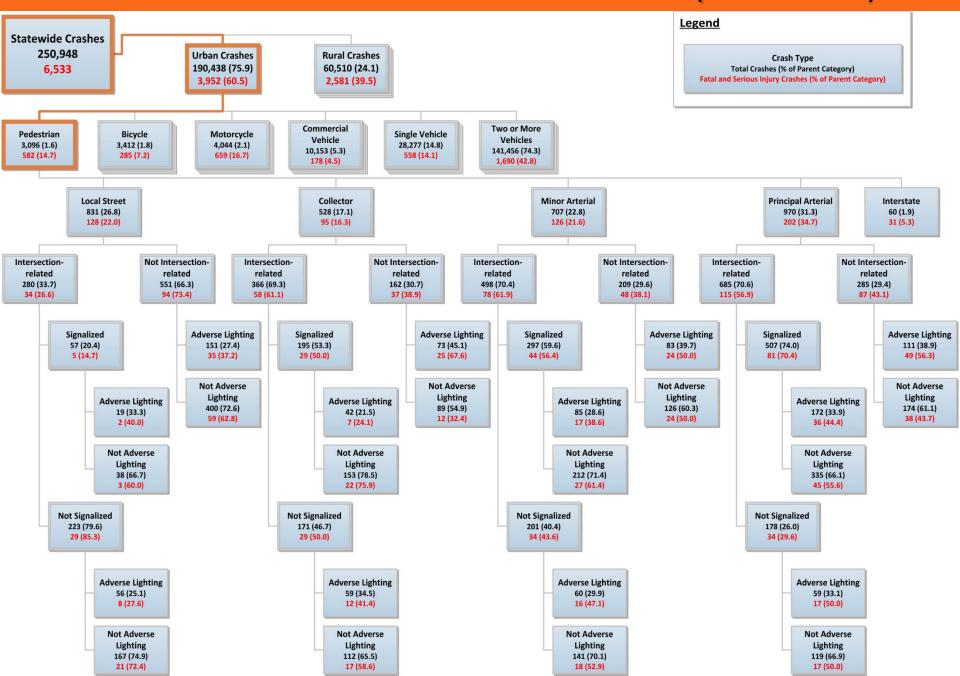
- Video logs
- Online aerial imagery
- Windshield surveys


Exposure data

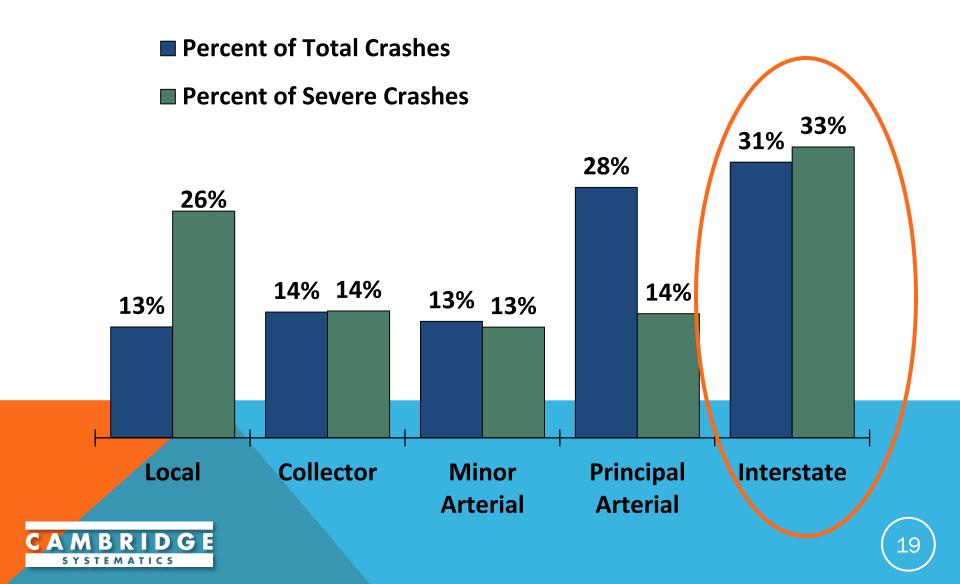

- AADT
- Modeled volume data

COUNTERMEASURE RESOURCES

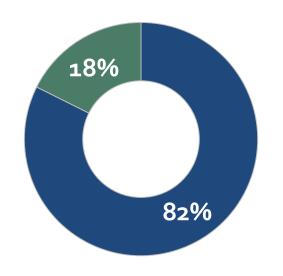
- NCHRP Report 500 Series
- Crash Modification Factors Clearinghouse
- Highway Safety Manual
- Strategic Highway Safety Plan
- Intersection Safety Plans
- Roadway Departure Improvement Plans
- FHWA's illustrated guide sheets and proven countermeasures
- NHTSA's Countermeasures That Work
- Agency experience / engineering judgment



CASE STUDY: UTAH SYSTEMIC SAFETY ANALYSIS



PEDESTRIAN CRASHES IN URBAN AREAS (2008-2012)


CRASH TYPE & RISK FACTOR IDENTIFICATION

Rural, single-vehicle crash distribution by roadway functional class

CRASH TYPE & RISK FACTOR IDENTIFICATION

Single-vehicle crashes on rural interstates

- Roadway Departure
- Not Roadway Departure

		Fixed Object	Rollover	Other	Total
Event 1	Off Left	4%	31%	6%	41%
	Off Right	4%	17%	7%	28%
	Other	4%	19%	8%	32%
Total		12%	67%	21%	100%

CRASH TYPE & RISK FACTOR IDENTIFICATION

Single-vehicle RD crashes on rural interstates

	Positive Median Barrier		Unprotected (Painted Median)		None/Unknown Median	
	Total Crashes	Severe Crashes	Total Crashes	Severe Crashes	Total Crashes	Severe Crashes
Local	1%	0%	2%	1%	97%	99%
Collector	1%	1%	2%	2%	97%	97%
Minor Arterial	1%	0%	4%	3%	95%	97%
Principal Arterial	16%	7%	12%	13%	71%	80%
Interstate	42%	21%	44%	69%	13%	10%
All Crashes	20%	8%	21%	28%	59%	64%

CASE STUDY: MORPC SYSTEMIC SAFETY IMPROVEMENT PROJECT

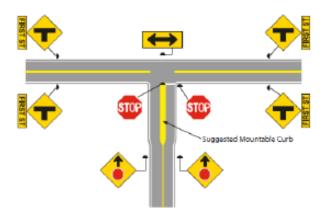
- \$2M project funded by Ohio DOT w/ local contribution
- Target crash types identified through data analysis at regional level
- Consultation and partnership w/ Ohio DOT
- Pilot project approach > template for other MPOs in Ohio
- Less data-intensive, emphasis on low-cost countermeasures already being implemented in the state.

Phase 1: Intersection Crashes (focus on angle crashes)

- Selected locations based on crash history and context (not based solely on risk factors): rural stop-controlled > lots of locations, crash history is useful
- Signal backplates > locations based on feasibility of installation

Phase 2: Pedestrian Crashes

- Treatments chosen based on existing countermeasures countdown timers, high-visibility crosswalks, RRFBs
- Local agencies submit candidate locations



IDEAS FOR SYSTEMIC IMPROVEMENTS IN NEW JERSEY

- 88% of fatal crashes are in urban areas
- 27% of fatalities are pedestrians (compared to 14% of U.S. total)
- Routes with high crash rate
- 2 or 4 lane roads without shoulder
- 4 lane roads without median

QUESTIONS?

Joe Fish
Cambridge Systematics
jfish@camsys.com

Beth Wemple
Cambridge Systematics

bwemple@camsys.com

